SuperCollider Tutorial

Chapter 3

By Celeste Hutchins
2005

www.celesteh.com

Creative Commons License: Attribution Only

Arrays

You may recall that an Array is an indexed list. We can create an array by
putting zero or more comma delineated expressions between square brackets.

For example, these are some arrays:

[1]

[x, y, z]

["in", "the", "house"]
N

There is often more than one way to do something in SuperCollider, as in life.
We can also create an Array by using a constructor. The constructor takes one

argument, the size of the array.

a = Array.new(size);

Arrays can hold any kind of object, including numbers, variables, strings or

nothing at all. They can even mix types:

[3, "French hens", 2 "turtledoves", 1 "partridge"]

Arrays can even hold other arrays: [[1, 2, 3], [4, 5, 6]]

You can also put an expression in an array. The interpreter evaluates it and
stores theresults. So [3 - 1, 4 + 3, 2 * 6] is also a valid array, stored as
[z, 7, 12]. [x.foo(2), x.bar(3)] is also an array. It passes those
messages to the objects and puts the result into the array. Because commas

have extremely low precedence, they get evaluated last.

A variable can be part of an expression that is put into an array:

var foo, bar;

[foo + 1 , bar];

In that last case, it holds the value of the expressions (including the variables) at

the time they became part of the array. For example:

var foo, arr;
foo = 2;
[foo];

arr.postln;

arr

foo. postln;
" ".postln;
foo = foo + 1;

arr.postln;

foo. postln;

Outputs:

L 2]
2

[2]

This is almost just what we expected. From whence did the second 3 at the
bottom come? SuperCollider's interpreter prints out a return value for every
code block that it runs. bar was the last object in the code block, so bar gets

returned. bar's value is 3.

The variables can go on to change, but the array holds the value that was put in,

like a snapshot of when the expression was evaluated.

What if we declare a five element array and want to add something to the array?

We use the Array.add message.

(
var arr, new_arr;
arr = ["Mary", "had", "a", "little"];
new_arr = arr.add("lamb™);
arr.postln;
new_arr.postln;

)

Outputs:

[Mary, had, a, little]
[Mary, had, a, little, lamb]

Arrays cannot grow in size once they've been created. So, as stated in the
helpfile, “the 'add' method may or may not return the same Array object. It will
add the argument to the receiver if there is space, otherwise it returns a new
Array object with the argument added.” Therefore, when you add something to
an array, you need to assign the result to a variable. arr doesn’t change in the

example because it is already full.

There are other messages you can send to Arrays, which are detailed in the
Array helpfile and the helpfile for its superclass ArrayedCollection. Two of my

favorite are scramble and choose.

The helpfile says that scramble "returns a new Array whose elements have been

scrambled. The receiver is unchanged."

The results of scramble are different each time you run it, because it scrambles
in random order. When it says, "the receiver is unchanged", it means that if we
want to save the scrambled Array, we have to assign that output to a new
variable. The receiver is the object that receives the message "scramble." In

this example, the receiver is arr, which contains [1, 2, 3, 4, 5, 6].

var arr, scrambled;

arr = [1, 2, 3, 4, 5, 6];
scrambled = arr.scramble;
arr.postln;

scrambled.postln;

Outputs:

[1’ 2) 3’ 4) 5’ 6]
[4’ l) 2’ 3) 6’ 5]

Of course, the second array is different every time. And arr is unchanged.

Choose is similar. It picks a random element of the Array and outputs it. The

receiver is unchanged.

[1, 2, 3].choose.postln;

Outputs:

Or 1 or 3, potentially changing every time you run it.

Arrays are lists, but they are not merely lists. They are indexed lists. You can

ask what the value of an item in an array is at a particular position.

var arr;

arr = ["Mal"y", "hCld", uau, lllittlell];

arr.at(1l).postln;

arr.at(3).postln;

Outputs:

had
little

Array indexes in SuperCollider start with 0. In the above example, arr.at(0) is

llMar‘yll-

Arrays also understand the message do, but treat it a bit differently than an

Integer does.

[3, 4, 5].do ({ arg item, index;

("index: " ++ index ++ " item: " ++ item).postln;

DK

Outputs:

index: @ item: 3
index: 1 item: 4

index: 2 item: 5

We call our arguments in this example item and index, but they can have any
name we want. It doesn't matter what we call them. The first one always gets
the value of the array item that the loop is on and the second one always gets

the index.

The ++ means concatenate, by the way. You use it to add something to the

end of a string. For example:

"foo " ++ 3 returns the string "foo 3"

In the last chapter, | mentioned Nicole, the ex-grad student working at a
SuperCollider startup. Since then, she's gotten another assignment from her
boss. She has to write a function that takes as arguments, an array of tuning
ratios, a base frequency and a detuning amount. It has to figure out the final
pitches by first multiplying the base frequency by the ratio and then adding the

detuning amount to the result. Then it has to print them all out formatted like:

tuning ratio: <ratio>, pitch: <pitch>

After learning about Arrays, our hero does a bit of research on tuning ratios and

comes up with an array of ratios that she will use to test her function. It looks

like: [1/1, 3/2, 4/3, 9/8, 16/9, 5/4, 8/5]

That is 1 divided by 1, 3 divided by 2, four divided by 3, etc. Now remember that
precedence means that the interpreter evaluates things in a particular order. It
looks at / before it looks at commas. So it seems a bunch of /'s and starts
dividing. Then it looks at the commas and treats it as an array. The interpreter

stores that array as:

[1, 1.5, 1.3333333333333, 1.125, 1.7777777777778, 1.25, 1.6]

Nicole’s function cycle through the ratios, taking each one and multiplying it by
the base frequency and adding the detuning amount. Remember that

*

SuperCollider is like a cheap calculator and +, -, *, and / all have the same
precedence. Math is evaluated from left to right. So ratio * baseFreq +
detune is not equivalent to detune + ratio * baseFreq, like it would be in

algebra. However, fortunately, she can use parenthesis like we would in algebra.

She could write out her expression as (ratio * baseFreq) + detune or (detune
+ (ratio * baseFreq)) or in many other ways. Even though she could get the
right answer without using parenthesis at all, it's good programming practice to

use them.

Nicole has a formula and she has an Array. She just needs a way to step

through it. Fortunately, she knows that the 'do’' method also exists for Arrays.

She writes her code as follows:
C

var func, arr;

func = { arg ratio_arr, baseFreq = 440, detune = 10;

var pitch;
ratio_arr.do({ arg ratio, index;

pitch = (ratio * baseFreq) + detune;

("Ratio: " ++ ratio ++ " Pitch: " ++ pitch).postln;
1
s

arr = [1/1, 3/2, 4/3, 9/8, 16/9, 5/4, 8/5];

func.value(arr, 440, 10);

Which outputs:

Ratio: 1 Pitch: 450

Ratio: 1.5 Pitch: 670

Ratio: 1.3333333333333 Pitch: 596.66666666667
Ratio: 1.125 Pitch: 505

Ratio: 1.7777777777778 Pitch: 792.22222222222
Ratio: 1.25 Pitch: 560

Ratio: 1.6 Pitch: 714

Envelopes

The next logical assignment for Nicole is to play those pitches rather than print
them out. In the last chapter, we wrote a function to play overtones, but it played
them all at the same time. We need a way to tell notes to end and to go from

note to note.

"Just like human beings, sounds are born, reach their prime and die; but

the life of a sound, from creation to evanescence last only a few seconds"
Yamaha GX-1 Guide

We control this process with a UGen called an envelope.

(
var syn, sound;
syn = SynthDef.new("example3", {arg out = @, freq = 440, amp = 0.2,
dur = 1;
var sin, env_gen, env;
env = Env.triangle(dur, amp);
env_gen = EnvGen.kr(env);
sin = SinOsc.ar(freq, mul: env_gen);
Out.arCout, sin);
1
syn.load(s);
D)

Synth.new("example3");

There are a few things that make that SynthDef different. One is that it uses
variables. Variables are a good way to keep SynthDefs more readable. The

easier it is to read, the easier it is to understand, to fix and to change.

The other obvious change is the addition of an envelope. Envelopes have two
parts. One is Env. The Env class lets you describe what shape the envelope

should have. In this case, we're using a fixed duration envelope shaped like a

triangle. When we use a fixed duration envelope, we know the length of the
envelope when we create an instance of the Synth. There are other envelopes
that we will not know the envelope of until we decide to end the note, for

instance, in response to a key up on a keyboard.

triangle is a constructor. It creates a new instance of an Env. The arguments

it takes are the duration and the maximum amplitude.

The other part of the envelope is the EnvGen. Since EnvGen is a class, kr must
be a constructor. The two most common UGen constructors are ar and kr.
You may recall that ar stands for “audio rate.” kr stands for “control rate.”
Because the EnvGen is not actually creating sound, but is controlling the
amplitude of a sound, we want the control rate. Control rate signals change less
often than audio rate signals, and so using kr reduces the load on our computer

and makes our SynthDef more efficient.

EnvGen.kr generates the envelope based on the specifications of its first
argument, an instance of Env. So, with Env, we define an Envelope. We pass
that definition to an Envelop Generator, which plays back the envelope that we
defined. We use that envelope to control the amplitude of a SinOsc. We send
the output of the SinOsc to an output bus. When the envelope is done, the

amplitude of it has returned to zero, so the SinOsc is no longer audible.

With our previous examples, the Synth never ended. The way to stop sound
was to stop execution with apple-. . With our new SynthDef, the sound goes on
for exactly the length of dur and then ends with no way to restart it. After we

create a Synth and play it, there's nothing that can be done with it.

Try running Synth.new("example3"); several times. If you look at the localhost

server window, you will see the number of UGens and Synths grow every time

you run Synth.new. The Avg and Peak CPU may also increase.

~
alala localhost server

Quit | K I- ->default| prepare recl

AvgCPU : 2.7 % Peak CPU : 3.1 %
UGens : 30 Synths : 5
Groups : 2 SynthDefs : 47 //

\ o= -4

Every time we create a new instance of Synth, we use up more system
resources. Eventually we will either run out of memory or the CPU will climb
over 100%. We can clear the Synths by hitting apple-., but this still would limit

the number of sounds we could play in a row without stopping execution.

We need an automatic way to remove our synths from the server and
deallocate their resources. That means that some other Synths would be able

to use the resources they were taking up.

Fortunately, EnvGens can both silence a Synth forever and lay it to rest so iti s
deallocated. EnvGen takes an argument called “doneAction”. Adding a

doneAction to your EnvGen would look like:

env_gen = EnvGen.kr(env, doneAction: 2);

The EnvGen helpfile describes doneActions. You should look at the helpfile for
EnvGen to look at what all the different values mean. 2 means "remove the

synth and deallocate it."

Try changing adding a doneAction to the SynthDef and running
Synth.new("example3"); a few times. Notice that now the Synths don’t
accumulate. Now, after a Synth stops making sound, it has ended its useful life

and so it gets removed from the server because of the doneAction: 2. However,

note that the doneAction removes only instances of the Synth. The SynthDef

persists and can be used as many times as we'd like.

Envelopes don’t have to only control amplitude, but can control (almost) any
aspect of any UGen. You can'’t set the bus on Out.ar with an Envelope, but you

can control almost anything else.

Routines

Now that we know how to create synths that can stop playing, we just need a
way to time their creation. A Routine is a highly versatile object that can be

used in many ways. One way it can be used is to add timing to your programs.

(
r = Routine.new ({
5.do({ arg index;
index.postln;
1l.wait;
1
3
r.play;
D)

That example prints out:

With a once second pause between each number. Try running it.

The class SimpleNumber, which we remember is the superclass of Float and
Integer, takes a message called wait. That message only works in the context of

a routine. If we try wait outside of a Routine:

(
fo={
5.do({ arg index;
index.postln;
1.wait;
1
s
f.play;
D)

We get an error:

e ERROR: yield was called outside of a Routine.
ERROR: Primitive '_RoutineYield' failed.

Routines are one powerful way to add timing to your program. Routine.new
takes a function as an argument. It runs that function when we send it the play
message. Hence, r.play; in the Routine example. When we play a Routine, it

will pause for a duration of SimpleNumber.wait. If we code 5.wait, it will pause

for five seconds. If we have 0.5.wait, it will pause for half a second.

Let's try to take Nicole's tuning assignment and have it play sounds instead of
just print data. We can't pass arguments to a Routine, but fortunately, because

of scope and functions returning things, there is a clever work around:

var func, rout;

func = { arg ratio_arr, baseFreq = 440, detune = 10;

Routine.new({

ratio_arr.postln;
baseFreq.postln;

detune.postln;

DK

+s

rout = func.value([1/1, 3/2, 2/1]);
rout.play;

First, we declare a function that takes three arguments. Then, inside the
function, we declare a Routine. Because the Routine is inside the function's
code block, the Routine is within the scope of the arguments. And because the
Routine is the last (and only, aside from the args) thing inside the function, it
gets returned when the function gets evaluated. So rout gets the Routine that

is returned by the function. Then we call rout.play; to run the Routine.

Remember that functions return their last value. And remember that scope
means that inner code blocks can see variables from outer code blocks, but not
vice versa. So the Routine can see the args. And there's nothing after the
Routine in the function, so it's the last value, so it gets returned when we send a
value message to the function. Then we send a play message to the returned
routine. We could abbreviate the last two lines of our program by just having

one line:

func.value([1/1, 3/2, 2/1]).play;

The interpreter, reading from right to left, will pass a value message to the func,
with an argument of [1/1, 3/2, 2/1], an array. That returns a Routine, which is

then passed a message of play.

We could use a Routine to alter Nicole’s program so that instead of just printing

ratios, it plays them in sequence using our SynthDef "example2".

var func, arr;

func = { arg ratio_arr, baseFreq = 440, detune = 10;

var pitch;

Routine.new({
ratio_arr.do({ arg ratio, index;
pitch = (ratio * baseFreq) + detune;
//("Ratio: " ++ ratio ++ " Pitch: " ++ pitch).postln;
Synth.new("example3", [\freq, pitch, \dur, 11);

1.wait;

DK
1);
1

arr = [1/1, 3/2, 4/3, 9/8, 16/9, 5/4, 8/5];

func.value(arr, 440, 10).play;

We can change this so it plays the pitches back in a random order, by sending a

scramble message to our ratio array, either by changing our function call to:
func.value(arr.scramble, 440, 10).play;

Or by changing our do loop:
ratio_arr.scramble.do({ arg ratio, index;

This is sounding more like music! Let’s try repeating it a few times, with an

argument specifying how many times.

var func, arr;

func = { arg ratio_arr, baseFreq = 440, detune = 10, repeats= 1;

var pitch;

Routine.new({
repeats.do ({

ratio_arr.scramble.do({ arg ratio, index;

pitch = (ratio * baseFreq) + detune;

//("Ratio: " ++ vratio ++ Pitch: " ++
pitch).postln;
Synth.new("example3", [\freq, pitch, \dur, 1]);
l.wait;
1
s
1
¥

arr = [1/1, 3/2, 4/3, 9/8, 16/9, 5/4, 8/5];

func.value(arr, 440, 10, 2).play;

What if we wanted to play out a hundred notes? There is often more than one

way to do something.

We could figure out the size of our Array:

var arr_size;

arr_size = ratio_arr.size;

And then divide that into a hundred to get an number for a SimpleNumber.do

loop. However, the array might not divide evenly into a hundred.

Or we could just count to 100.

100.do({arg count;

count = count % arr_size;

pitch ratio_arr.at(count);

pitch = (pitch * baseFreq) + detune;

1)

Remember that the modulus (%) gives us a remainder. This means that if the
count gets to be greater than the number of elements in the array, using a
modulus will cause it to wrap around to zero when it exceeds the size of the

array. There is also a message you can send to arrays that does this for you:

arr.wrapAt(index) == arr.at(index % arr.size)

Problems

1. Try out the different fixed duration envelopes and try them out with
different Oscillators. Especially try out the Env.perc envelope with

different noise generators.

2. Create a program that plays notes from a tuning array. Change the
duration of notes, using the \dur value in Synth.new. Try also modifying
the length of the waits. Create rhythm by using arrays for durations and

waits.

3. You can navigate arrays of different length using variables for indexes.

var arr, arr2, arrZ2_index;

arr = [1, 2, 3];

arr2 = [3, 4, 5, 6];

arr2_index = 0;

2.do({

arr.do({ arg item;

("arr " ++ item).postln;

("\t arr2 " ++ arr2.wrapAt(arr2_index)).postln;

arr2_index = arr2_index + 1;
1
1

(“\t” means tab and makes this print more nicely.)

Use this idea to create duration, pitch and wait loops of different lengths.
4. Instead of calculating detuning in your Routine, do it in the SynthDef

using a fixed duration envelope. Create an argument to your SynthDef for

the peak detuning amount.

Project

Write a one or two minute long piece using Routines.

